Rapidity gap survival in central exclusive diffraction: Mechanisms and uncertainties

C. Weiss (JLab), DIS2009 Diffraction, 27-Apr-09

Partonic description of interplay hard process ↔ spectator interactions

- Mean-field approximation: Hard/soft independent
 - Model—independent formulation
 - Uncertainties: Gluon GPD, pp elastic amplitude
- Correlations between hard process and spectator interactions
 - Fluctuations of parton densities
 - Absorption of hard spectators in black-disk regime \dots on RGS probability
 - Transverse correlations between partons

Substantial effect on RGS probability for LHC Higgs!

Hard-soft interplay in $pp \rightarrow p + H + p$

Different time/distance scales!

FHSW, PRD **75**:054009, 2007

• *H* produced in hard process

$$\mu_{
m soft}^2 \ll Q_{
m int}^2 \ll M^2$$
 [Khoze et al. 97+] $x_{1,2} \, \sim \, {M \over \sqrt{s}} \, \sim \, 10^{-2}$ Higgs at LHC

 Soft spectator interactions must not produce particles

$$S^2 \equiv rac{\sigma_{
m diff}(
m full)}{\sigma_{
m diff}(
m no\ soft)}$$
 Gap survival probability

- Mean-field approximation: $[V_{\mathsf{hard}}, H_{\mathsf{soft}}] = 0$ independent, closure of partonic states
- Amplitude calculable in terms of
 - Gluon GPD, unintegrated
 - pp elastic S-matrix

Mean-field approximation: Survival probability

• Gap survival probability

$$S^2 = \int \! d^2b \ P_{\rm hard}(b) \ |1 - \Gamma(b)|^2$$

Probability for two–gluon collision

favors small b

Probability for "no inelast, interaction"

favors large b

- \bullet "Blackness" of pp amplitude $\Gamma(b) \sim 1$ suppresses diffraction at small b
- Numerical results in mean-field approx. $S^2 \sim 0.03 0.04$ Higgs at LHC

 $P_{\mathsf{hard}}(b)$: Overlap of normalized transverse gluon densities (squared)

Gap survival: "Transverse geometry"

Mean-field approximation: Uncertainties

- S^2 : Only t-dependence of gluon GPD \rightarrow normalized transverse distribution!
- Experiment: Exclusive J/ψ production $R^2(\text{gluons } x \sim 10^{-2}) \ll R^2(\text{soft})$
- Uncertainties from t-dependence Parameter in $\exp Bt \sim 30\%$ in S^2 Functional form $\sim 30\%$
- Uncertainty from pp elastic amplitude: Data allow $\Gamma(b=0) < 1$, but other effects remove small b(hard spectator interactions \rightarrow later)

Details: SW, arXiv:0903.3861

Correlations: Fluctuations of parton density

• Fluctuations of gluon density in hard diffraction $ep \rightarrow e + V + X$:

$$\omega_g = \frac{\langle G^2 \rangle - \langle G \rangle^2}{\langle G \rangle^2} = \left. \frac{d\sigma/dt \text{ (inel)}}{d\sigma/dt \text{ (el)}} \right|_{t=0}$$

New sum rule!

Scaling model of nucleon:

$$\omega_g \sim 0.1 \text{ at } Q^2 = 3 \, \text{GeV}^2, \ x = 10^{-2}$$

- Correlation with fluctuations of soft interaction strength (cf. Good–Walker)
 - Model: S^2 at LHC reduced by $\sim 20\%$
 - Inelastic diffraction already included in mean-field: Closure of partonic states

Correlations: Absorption of hard spectators

- Black-disk regime of QCD:
 Parent partons in evolution experience strong absorptive interactions with small-x gluons in other proton
 - Critical k_{T} and impact parameter dependence from QCD dipole model (gluon dipoles!)
 - No emissions: Possible, but Sudakov—suppressed
- Reduces S^2 at LHC by at least factor ~ 3 , much weaker effect at Tevatron
- Larger impact parameters
 - \rightarrow steeper $p_{1\mathrm{T}}, p_{2\mathrm{T}}$ dependence!

Important, should be studied in detail

Correlations: Nucleon structure

- Indications for significant non-perturbative transverse correlations between partons
 - CDF data $p\bar{p} o {\rm dijet} + \gamma + X$
 - "Constituent quarks" of size $r\sim 0.3\,{\rm fm}$ from chiral symmetry breaking in QCD cf. Instanton vacuum [Diakonov, Petrov 86]
- General trend: Correlations reduce RGS probability: Increased local opacity!
 Examples see FHSW, PRD 75, 054009 (2007)

Potentially large effect on S^2 , requires detailed modeling

Summary

- RGS in mean-field approximation
 - ightarrow Model-independent: Gluon GPD, pp elastic amplitude
 - \rightarrow Numerical results comparable to Khoze et al. (eikonalized pomeron)
 - \rightarrow Uncertainty \sim factor 2
- New effect: Hard spectator interactions in black-disk regime
 - ightarrow Reduces RGS probability at LHC by at least factor ~ 3
 - → Marginal at Tevatron careful with extrapolation!
- Need detailed modeling including impact parameter dependence, parton radiation "history," unitarity effects, and non-perturbative parton-parton correlations in wave function

Survival probability for Higgs at LHC: $S^2 < 0.01$